This book is an accessible guide to adaptive signal processing methods that equips the reader with advanced theoretical and practical tools for the study and development of circuit structures and provides robust algorithms relevant to a wide variety of application scenarios. Examples include multimodal and multimedia communications, the biological and biomedical fields, economic models, environmental sciences, acoustics, telecommunications, remote sensing, monitoring and in general, the modeling and prediction of complex physical phenomena. The reader will learn not only how to design and implement the algorithms but also how to evaluate their performance for specific applications utilizing the tools provided. While using a simple mathematical language, the employed approach is very rigorous. The text will be of value both for research purposes and for courses of study.

Fundamentals of Parallel Processing

Parallel Computing for Data Science: With Examples in R, C++, and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic “n observations, p variables” matrix format but also from time series.

Parallel Computing

With the rise of multi-core architecture, parallel programming is an increasingly important topic for software engineers and computer system designers. Written by well-known researchers Larry Snyder and Calvin Lin, this highly anticipated first edition emphasizes the principles underlying parallel computation, explains the various phenomena, and clarifies why these phenomena represent opportunities or barriers to successful parallel programming. Ideal for an advanced upper-level undergraduate course, Principles of Parallel Programming supplies enduring knowledge that will outlive the current hardware and software, aiming to inspire future researchers to build tomorrow's solutions.

Parallel Programming

This introduction to parallel programming explores the fundamentals of parallelism, parallel system architecture (MIMD and SIMD), and parallel programming languages, and presents methods for designing parallel algorithms, for writing efficient parallel programs, and for computing performance data and judging it.

Fundamentals of Multicore Software Development

This textbook introduces major topics that include quantum bits, superposition, entanglement, logic gates, quantum search algorithm, quantum Fourier transform, inverse quantum Fourier transform, Shor’s order-finding algorithm and phase estimation. Everyone can write algorithms and programs in the cloud making using IBM’s quantum computers that support IBM Q Experience which contains the composer, open quantum assembly language, simulators and real quantum devices. Furthermore, this book teaches you how to use open quantum assembly language to write quantum programs for dealing with complex problems. Through numerous examples and exercises, readers will learn how to write a quantum program with open quantum assembly language for solving any problem from start to complete. This book includes six main chapters: Quantum Bits and Quantum Gates—learn what quantum bits are, how to declare and measure them, what quantum gates are and how they work on a simulator or a real device in the cloud. Boolean Algebra and its Applications—learn how to decompose CCNOT gate into six CNOT gates and nine gates of one bit and how to use NOT gates, CNOT gates and CCNOT gates to implement logic operations including NOT, OR, AND, NOR, NAND, Exclusive-OR (XOR) and Exclusive-NOR (XNOR). Quantum Search Algorithm and its Applications—learn core concepts of quantum search algorithm and how to write quantum programs to implement core concepts of quantum search algorithm for solving two famous NP-complete problems that are the satisfiability problem in n Boolean variables and m clauses and the clique problem in a graph with n vertices and q edges. Quantum Fourier Transform and its Applications—learn core concepts of quantum Fourier transform and inverse quantum Fourier transform and how to write quantum programs to implement them for solving two real
applications that are to compute the period and the frequency of two given oracular functions. Order-Finding and Factoring—learn core concepts of Shor’s order-finding algorithm and how to write quantum programs to implement Shor’s order-finding algorithm for completing the prime factorization to 15. Phase Estimation and its Applications—learn core concepts of phase estimation and quantum counting and how to write quantum programs to implement them to compute the number of solution(s) in the independent set problem in a graph with two vertices and one edge.

Introduction to Parallel Computing

This book presents the principles, experimental technologies, up-to-date research findings and applications of various optical-computing technologies and devices. It also discusses semiconductor multiple quantum well (MQW) photoelectronic devices, vertical-cavity surface-emitting lasers (VCSELs), lasers, micro optical elements and diffractive optical elements, optical storage, optical parallel interconnections, and optical-buffer technology as the main technologies for optical computing. Furthermore, it explores the potential of optical-computing technology. It offers those involved in optical design, photonics, and photoelectronic research and related industries insights into the fundamentals and theories of optical computing, enabling them to extend and develop the functions of fundamental elements to meet the requirement of optical-computing systems.

Advanced Computer Architecture and Parallel Processing

Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.

Parallel Programming with C# and .NET Core

When we think about processor intensive applications, we think about parallel computing. This book discusses what parallel computing is and how it can be achieved. Parallel computing cannot be achieved by hardware or software alone, but by a combination of these two. At the lowest level, this book describes the operating system characteristics that are necessary to achieve parallelism. At the programming level, we must have an algorithm that maps tasks to different processors and executes them simultaneously. Another important aspect of parallelism is parallel hardware. Parallel hardware has the capability to execute multiple instructions simultaneously. Thus parallel hardware, operating system, and parallel algorithm together form a parallel system capable of achieving parallelism. Computing cost is another aspect of parallel computing. While developing a parallel algorithm, it is necessary to make sure that its cost is optimal. This book discusses all these aspects of parallel computing alongwith cost optimal algorithms with examples to make sure that students get familiar with it. After reading this book a student should have enough knowledge to develop his own parallel algorithm for a given problem.

Fundamentals of Computer Organization and Architecture

Not only does almost everyone in the civilized world use a personal computer, smartphone, and/or tablet on a daily basis to communicate with others and access information, but virtually every other modern appliance, vehicle, or other device has one or more complex embedded inside it. One cannot purchase a current-model automobile, for example, without several computers on board to do everything from monitoring exhaust emissions, to operating the anti-lock brakes, to telling the transmission when to shift, and so on. Appliances such as clothes washers and dryers, microwave ovens, refrigerators, etc. are almost all digitally controlled. Gaming consoles like Xbox, PlayStation, and Wii are powerful computer systems with enhanced capabilities for user interaction. Computers are everywhere, even when we don’t see them as such, and it is more important than ever for students who will soon enter the workforce to understand how they work. This book is completely updated and revised for a one-semester upper level undergraduate course in Computer Architecture, and suitable for use in an undergraduate CS, EE, or CE curriculum at the junior or senior level. Students should have had a course(s) covering introductory topics in digital logic and computer organization. While this is not a text for a programming course, the reader should be familiar with computer programming concepts in at least one language such as C, C++, or Java. Previous courses in operating systems, assembly language, and/or systems programming would be helpful, but are not essential.

Fundamentals of Parallel Computer Architecture

* Comprehensive introduction to the fundamental results in the mathematical foundations of distributed computing * Accompanied by supporting material, such as lecture notes and solutions for selected exercises * Each chapter ends with bibliographical notes and a set of exercises * Covers the fundamental models, issues and techniques, and features some of the more advanced topics

Parallel Scientific Computing in C++ and MPI

Enhance your enterprise application development skills by mastering parallel programming techniques in .NET and C# Key Features

Write efficient, fine-grained, and scalable parallel code with C# and .NET Core Experience how parallel programming works by building a powerful application Learn the fundamentals of multithreading by working with IIS and Kestrel Book Description In today's world, every CPU has a multi-core processor. However, unless your application has implemented parallel programming, it will fail to utilize the hardware’s full processing capacity. This book will show you how to write modern software on the optimized and high-performing .NET Core 3 framework using C# 8. Hands-On Parallel Programming with C# 8 and .NET Core 3 covers how to build multithreaded, concurrent, and optimized applications that harness the power of multi-core processors. Once you've understood the fundamentals of threading and concurrency, you'll gain insights into the data structure in .NET Core that supports parallelism. The book will then help you perform asynchronous programming in C# and diagnose and debug parallel code effectively. You’ll also get to grips with the new Kestrel server and understand the difference between the IIS and Kestrel operating
models. Finally, you’ll learn best practices such as test-driven development, and run unit tests on your parallel code. By the end of the book, you’ll have developed a deep understanding of the core concepts of concurrency and asynchrony to create responsive applications that are not CPU-intensive. What you will learn Analyze and break down a problem statement for parallelism Explore the APM and EAP patterns and how to move legacy code to Task Apply reduction techniques to get aggregated results Create PLINQ queries and study the factors that impact their performance Solve concurrency problems caused by producer-consumer race conditions Discover the synchronization primitives available in .NET Core Understand how the threading model works with IIS and Kestrel Find out how you can make the most of server resources Who this book is for If you want to learn how task parallelism is used to build robust and scalable enterprise architecture, this book is for you. Whether you are a beginner to parallelism in C# or an experienced architect, you’ll find this book useful to gain insights into the different threading models supported in .NET Standard and .NET Core. Prior knowledge of C# is required to understand the concepts covered in this book.

Parallel Computing for Data Science

This millennium will see the increased use of parallel computing technologies at all levels of mainstream computing. Most computer hardware will use these technologies to achieve higher computing speeds, high speed access to very large distributed databases, and greater flexibility through heterogeneous computing. These developments can be expected to result in the extended use of all types of parallel computers in virtually all areas of human endeavor. Compute-intensive problems in emerging areas such as financial modelling and multimedia systems, in addition to traditional application areas of parallel computing such as scientific computing and simulation, will stimulate the developments. Parallel computing as a field of scientific research and development will move from a niche concentrating on solving compute-intensive scientific and engineering problems to become one of the fundamental computing technologies. This book gives a retrospective view of what has been achieved in the parallel computing field during the past three decades, as well as a prospective view of expected future developments. Contents: Invited PapersApplicationsAlgorithmsSystem Software and Hardware ArchitectureIndustrial PerspectiveExtended Abstracts Readership: Researchers in high-speed computing. Keywords:Computing Technologies;Algorithms;System Software;Hardware Architecture;High-Speed Computing

Distributed Computing

This book teaches fundamentals of stream processing, covering application design, distributed systems infrastructure, and continuous analytic algorithms.

A Practical Approach to High-Performance Computing

Concurrent Programming: Algorithms, Principles, and Foundations

Intelligent readers who want to build their own embedded computer systems-- installed in everything from cell phones to cars to handheld organizers to refrigerators-- will find this book to be the most in-depth, practical, and up-to-date guide on the market. Designing Embedded Hardware carefully steers between the practical and philosophical aspects, so developers can both create their own devices and gadgets and customize and extend off-the-shelf systems. There are hundreds of books to choose from if you need to learn programming, but only a few are available if you want to learn to create hardware. Designing Embedded Hardware provides software and hardware engineers with no prior experience in embedded systems with the necessary conceptual and design building blocks to understand the architectures of embedded systems. Written to provide the depth of coverage and real-world examples developers need, Designing Embedded Hardware also provides a road-map to the pitfalls and traps to avoid in designing embedded systems. Designing Embedded Hardware covers such essential topics as: The principles of developing computer hardware Core hardware designs Assembly language concepts Parallel I/O Analog-digital conversion Timers (internal and external) UART Serial Peripheral Interface Inter-Integrated Circuit Bus Controller Area Network (CAN) Data Converter Interface (DCI) Low-power operation This invaluable and eminently useful book gives you the practical tools and skills to develop, build, and program your own application-specific computers.

Designing Embedded Hardware

Computer architecture deals with the physical configuration, logical structure, formats, protocols, and operational sequences for processing data, controlling the configuration, and controlling the operations over a computer. It also encompasses word lengths, instruction codes, and the interrelationships among the main parts of a computer or group of computers. This two-volume set offers a comprehensive coverage of the field of computer organization and architecture.

Principles of Parallel Programming

Fundamentals of Optical Computing Technology

This book is devoted to the most difficult part of concurrent programming, namely synchronization concepts, techniques and principles when the cooperating entities are asynchronous, communicate through a shared memory, and may experience failures. Synchronization is no longer a set of tricks but, due to research results in recent decades, it relies today on sane scientific foundations as explained in this book. In this book the author explains synchronization and the implementation of concurrent objects, presenting in a uniform and comprehensive way the major theoretical and practical results of the past 50 years. Among the key features of the book are a new look at lock-based synchronization (mutual exclusion, semaphores, monitors, path expressions); an introduction to the atomicity consistency criterion and its properties and a specific chapter on transactional memory; an introduction to mutex-freedom and associated progress conditions such as obstruction-freedom and wait-freedom; a presentation of Lamport’s hierarchy of safe, regular and atomic registers and associated wait-free constructions; a description of numerous wait-free constructions of concurrent objects (queues, stacks, weak counters, snapshot objects, renaming objects, etc.); a presentation of the computability power of concurrent objects including the notions of universal construction, consensus number and the
associated Herlihy's hierarchy; and a survey of failure detector-based constructions of consensus objects. The book is suitable for advanced undergraduate students and graduate students in computer science or computer engineering, graduate students in mathematics interested in the foundations of process synchronization, and practitioners and engineers who need to produce correct concurrent software. The reader should have a basic knowledge of algorithms and operating systems.

Optical and Digital Image Processing

Learn, understand, and code parallel programs with confidence using C# 8 and .NET Core 3.0 KEY FEATURES - Explore and work with the new features and enhancements in .NET Core 3.1 and C# 8. - Understand the fundamentals of parallel programming. - Learn various threading patterns and synchronization constructs. - Build concurrent applications using C# and .NET Core 3.1 from the ground up. - Understand the principles of unit testing and debugging in concurrent applications. DESCRIPTION Application development has evolved over the last decade, and with the advent of the latest technologies like Angular, React on client-side, and ASP.NET Core, Spring on the server-side, the consumer expectations have risen like never before. The primary objective of this book is to help readers understand the importance of asynchronous programming and various ways it can be achieved using .NET Core 3.1 and C# 8 to successfully build concurrent applications. Along the way reader will learn the fundamentals of threading, asynchronous programming, various asynchronous patterns, synchronisation constructs, unit testing parallel methods, debugging enterprise applications, and cool tips and tricks. There are samples based on practical examples that will help the reader effectively use parallel programming. By the end of this book, you will be equipped with all the knowledge needed to understand, code, and debug multithreaded, concurrent and parallel programs with confidence. WHAT WILL YOU LEARN - Understand the internals of async/await. - Learn how to build applications using async/await. - Write unit tests for asynchronous methods. - Explore various debugging techniques for enterprise applications. - Discover cool tips, tricks, and best practices to help you avoid common mistakes. WHO THIS BOOK IS FOR Beginners and intermediate developers who build enterprise applications using .NET Core platform and tools. Advanced users can also use this book for brushing up fundamentals and for learning debugging tools, techniques, tips, and tricks. TABLE OF CONTENTS 1. Getting Started 2. What's new in C# 8? 3. .NET Core 3.1 4. Demystifying Threading 5. Parallel Programming 6. The Threading Patterns 7. Synchronization Constructs 8. Unit Testing Parallel and Asynchronous Programs 9. Debugging and Troubleshooting (Its spelling is incorrect in pdf) 10. Tips and Tricks

Fundamentals of Stream Processing

This two-volume set provides comprehensive coverage of the field of computer organization and architecture. The first book in the set gives complete coverage of the subjects pertaining to introductory courses in computer organization and architecture, including: Instruction set architecture and design Assembly language programming Computer arithmetic Processing unit design Memory system design Input-output design and organization Pipelining design techniques Reduced Instruction Set Computers (RISCs) The second volume provides advanced coverage of the field. Both books benefit from the authors' many years' experience in teaching this field as they offer real world applications, examples of machines, case studies and practical experiences in each chapter.

Parallel Computing: Fundamentals, Applications and New Directions

Rapid changes in the field of parallel processing make this book especially important for professionals who are faced daily with new products—and provides them with the level of understanding they need to evaluate and select the products. It gives readers a fundamental understanding of parallel processing application and system development. Chapter topics include parallel machines and computations, potential for parallel computations, vector algorithms and architectures, MIMD computers and multiprocessors, distributed memory processors, interconnection networks, data dependence and parallelism, implementing synchronization and data sharing, parallel processor performance, temporal behavior of parallel programs, and parallel I/O. For computational scientists, software engineers, computer architects, and computer engineers.

Modern Processor Design

Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships.

Hands-On Parallel Programming with C# 8 and .NET Core 3

This text addresses some theoretical issues surrounding computer science. It provides an introduction to the theory of computation, and covers programming languages, finite state machines, grammars, Boolean circuits, computational complexity, feasible problems, and intractable problems.

Fundamentals of the Theory of Computation

This millennium will see the increased use of parallel computing technologies at all levels of mainstream computing. Most computer hardware will use these technologies to achieve higher computing speeds, high speed access to very large distributed databases
and greater flexibility through heterogeneous computing. These developments can be expected to result in the extended use of all types of parallel computers in virtually all areas of human endeavour. Computer-intensive problems in emerging areas such as financial modeling and multimedia systems, in addition to traditional application areas of parallel computing such as scientific computing and simulation, will stimulate the developments. Parallel computing as a field of scientific research and development will move from a niche concentrating on solving computer-intensive scientific and engineering problems to become one of the fundamental computing technologies. This book gives a retrospective view of what has been achieved in the parallel computing field during the past three decades, as well as a prospective view of expected future developments.

Fundamentals of Parallel Computing

What does Google’s management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book’s computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today’s high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book

An Introduction to Parallel Computing: Design and Analysis of Algorithms, 2/e

Parallel Computing

"a must-read text that provides a historical lens to see how ubicomp has matured into a multidisciplinary endeavor. It will be an essential reference to researchers and those who want to learn more about this evolving field." - From the Foreword, Professor Gregory D. Abowd, Georgia Institute of Technology First introduced two decades ago, the term ubiquitous computing is now part of the common vernacular. Ubicomp, as it is commonly called, has grown not just quickly but broadly so as to encompass a wealth of concepts and technology that serves any number of purposes across all of human endeavor. While such growth is positive, the newest generation of ubicomp practitioners and researchers, isolated to specific tasks, are in danger of losing their sense of history and the broader perspective that has been so essential to the field’s creativity and brilliance. Under the guidance of John Krumm, an original ubicomp pioneer, Ubiquitous Computing Fundamentals brings together eleven ubiquitous computing trailblazers who each report on his or her area of expertise. Starting with a historical introduction, the book moves on to summarize a number of self-contained topics. Taking a decidedly human perspective, the book includes discussion on how to observe people in their natural environments and evaluate the critical points where ubiquitous computing technologies can improve their lives. Among a range of topics this book examines: How to build an infrastructure that supports ubiquitous computing applications Privacy protection in systems that connect personal devices and personal information Moving from the graphical to the ubiquitous computing user interface Techniques that are revolutionizing the way we determine a person’s location and understand other sensor measurements While we needn’t become expert in every sub-discipline of ubicomp, it is necessary that we appreciate all the perspectives that make up the field and understand how our work can influence and be influenced by those perspectives. This is important, if we are to encourage future generations to be as successfully innovative as the field’s originators.

Scientific Parallel Computing

This volume gives an overview of the state-of-the-art with respect to the development of all types of parallel computers and their application to a wide range of problem areas. The international conference on parallel computing ParCo97 (Parallel Computing 97) was held in Bonn, Germany from 19 to 22 September 1997. The first conference in this biannual series was held in 1983 in Berlin. Further conferences were held in Leiden (The Netherlands), London (UK), Grenoble (France) and Gent (Belgium). From the outset the aim with the ParCo (Parallel Computing) conferences was to promote the application of parallel computers to solve real life problems. In the case of ParCo97 a new milestone was reached in that more than half of the papers and posters presented were concerned with application aspects. This fact reflects the coming of age of parallel computing. Some 200 papers were submitted to the Program Committee by authors from all over the world. The final programme consisted of four invited papers, 71 contributed scientific/industrial papers and 45 posters. In addition a panel discussion on Parallel Computing and the Evolution of Cyberspace was held. During and after the conference all final contributions were refereed. Only those papers and posters accepted during this final screening process are included in this volume. The practical emphasis of the conference was accentuated by an industrial exhibition where companies demonstrated the newest developments in parallel processing equipment and software. Speakers from participating companies presented papers in industrial sessions in which new developments in parallel computing were reported.

Fundamentals Of Parallel Processing

Conceptual and precise, Modern Processor Design brings together numerous microarchitectural techniques in a clear, understandable framework that is easily accessible to both graduate and undergraduate students. Complex practices are distilled into foundational principles to reveal the authors insights and hands-on experience in the effective design of contemporary high-performance micro-processors for mobile, desktop, and server markets. Key theoretical and foundational principles are presented
in a systematic way to ensure comprehension of important implementation issues. The text presents fundamental concepts and foundational techniques such as processor design, pipelined processors, memory and I/O systems, and especially superscalar organization and implementations. Two case studies and an extensive survey of actual commercial superscalar processors reveal real-world developments in processor design and performance. A thorough overview of advanced instruction flow techniques, including developments in advanced branch predictors, is incorporated. Each chapter concludes with homework problems that will institute the groundwork for emerging techniques in the field and an introduction to multiprocessor systems.

Foundations of Parallel Programming

The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.

Fundamentals of Parallel Multicore Architecture

This book covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Fundamentals of Adaptive Signal Processing

This is the first book in the two-volume set offering comprehensive coverage of the field of computer organization and architecture. This book provides complete coverage of the subjects pertaining to introductory courses in computer organization and architecture, including: * Instruction set architecture and design * Assembly language programming * Computer arithmetic * Processing unit design * Memory system design * Input-output design and organization * Pipelining design techniques * Reduced Instruction Set Computers (RISCs) The authors, who share over 15 years of undergraduate and graduate level instruction in computer architecture, provide real world applications, examples of machines, case studies and practical experiences in each chapter.

Scheduling for Parallel Processing

In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. This book covers the fundamental basis of the optical and image processing technologies by integrating contributions from both optical and digital research communities to solve current application bottlenecks, and give rise to new applications and solutions. Besides focusing on joint research, it also aims at disseminating the knowledge existing in both domains. Applications covered include image restoration, medical imaging, surveillance, holography, etc “a very good book that deserves to be on the bookshelf of a serious student or scientist working in these areas.” Source: Optics and Photonics News

Fundamentals of Software Engineering

This is the first book in the two-volume set offering comprehensive coverage of the field of computer organization and architecture. This book covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Computer Architecture

With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. By explaining key aspects of multicore programming, Fundamentals of Multicore Software Development helps software engineers understand parallel programming and master the multicore challenge. Accessible to newcomers to the field, the book captures the state of the art of multicore programming in computer science. It covers the fundamentals of multicore hardware, parallel design patterns, and parallel programming in C++, .NET, and Java. It also discusses manycore computing on graphics cards and heterogeneous multicore platforms, automatic parallelization, automatic performance tuning, transactional memory, and emerging applications. As computing power increasingly comes from parallelism, software developers must embrace parallel programming. Written by leaders in the field, this book provides an overview of the existing and up-and-coming programming choices for multicores. It addresses issues in systems architecture, operating systems, languages, and compilers.

Fundamentals of Parallel Multicore Architecture
Although multicore is now a mainstream architecture, there are few textbooks that cover parallel multicore architectures. Filling this gap, Fundamentals of Parallel Multicore Architecture provides all the material for a graduate or senior undergraduate course that focuses on the architecture of multicore processors. The book is also useful as a ref

Parallel Computing

This is the first comprehensive account of this new approach to the fundamentals of parallel programming.

Fundamentals of Quantum Programming in IBM's Quantum Computers

Copyright code: 8d6ed1eab435fe31951ad0b48164fd81