Solar Hybrid Systems: Design and Application discusses the key power generation characteristics of solar systems and explores the growing need for hybrid systems. The authors use real-life examples to explain the disadvantages of solar systems without hybridization and to demonstrate the various applications hybrid solar systems can be used for, paying special attention to its integration with energy storage systems. The book also discusses the impact of hybridization and how this can improve power generation quality along with investigating novel and advanced hybrid solar systems. This is a useful reference for engineers and researchers involved in both the development and application of hybrid solar systems, and features topics such as solutions for the intermittence of renewable energy sources; on-grid and off-grid solar hybrid systems; the simulation, design and application of hybrid solar systems; the role of energy storage systems in solar hybrid applications; and the future of
electric vehicles using solar hybrid systems. Demonstrates the benefits of hybrid solar systems and why they are needed. Features practical advice on designing hybrid solar systems. Includes key findings and real-world examples to illustrate the applications of hybrid solar systems.

The sustainable energy sources are potentially employed to substitute petrol fuels in transport engines such as buses and small vehicles. Hydrogen-enriched compressed natural gas engines are forthcoming energy carriers for the internal combustion engine, with higher thermal efficiency and less pollutant emissions. The different availability of renewables has allowed various countries to adopt the most appropriate type of renewable energy technology according to their energy source adequacy/abundance. In Taiwan, ocean energy is considered as an abundant source of renewables due to its geographical location as an island. The Taiwanese government has approved the investment to construct an MW-scale demonstration electricity plant. In this book, the Taiwanese ocean energy experience is comprehensively presented. The technical and legal analyses of ocean energy implementation are provided. The challenges that they had to overcome to optimize the utilization of the most available ocean energy potential are discussed. The sustainable transition in South Africa would be a good example for implementing rooftop solar, especially in low-income communities. Apart from the environmental benefits, sustainable energy technologies can boost the socioeconomic level of developing countries. Other advantages may be the continuous supply of energy and creation of new job opportunities. Moreover, sustainable renewable energy sources such as the wind could be employed for generating electricity to operate water purification systems in remote areas. This, in turn, would overcome the health problems associated with drinking water scarcity issues. This book is an attempt to cover the sustainable energy issues from a technical perspective. Furthermore, the sustainable energy applications and existing case studies are helpful illustrations for the broad understanding of the importance of sustainable energy.

The energy scene in the world is a complex picture of a variety of energy sources being used to meet the world's growing energy needs. There is, however, a gap in the demand and supply. It is recognized that decentralized power generation based on the various renewable energy technologies can, to some extent, help in meeting the growing energy needs. The renewable energy landscape has witnessed tremendous changes in the policy framework with accelerated and ambitious plans to increase the contribution of renewable energy such as solar, wind, bio-power, and others. Hybrid renewable energy systems are important for continuous operation and supplements each form of energy seasonally, offering several benefits over a stand-alone system. It can enhance capacity and lead to greater security of continuous electricity supply, among other applications. This book provides a
platform for researchers, academics, industry professionals, consultants and designers to discover state-of-the-art developments and challenges in the field of hybrid renewable energy. Written by a team of experts and edited by one of the top researchers in hybrid renewable systems, this volume is a must-have for any engineer, scientist, or student working in this field, providing a valuable reference and guide in a quickly emerging field.

This book discusses the supervision of hybrid systems and presents models for control, optimization and storage. It provides a guide for practitioners as well as graduate and postgraduate students and researchers in both renewable energy and modern power systems, enabling them to quickly gain an understanding of stand-alone and grid-connected hybrid renewable systems. The book is accompanied by an online MATLAB package, which offers examples of each application to help readers understand and evaluate the performance of the various hybrid renewable systems cited. With a focus on the different configurations of hybrid renewable energy systems, it offers those involved in the field of renewable energy solutions vital insights into the control, optimization and supervision strategies for the different renewable energy systems.

Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities. Covers detailed thermodynamic requirements for multiple smart technologies included in hybrid systems (i.e., FC, electrolysers, supercapacitors, batteries, thermal storage, etc.) Features fundamental analysis and modeling to optimize the combination of smart technologies with traditional engines Details protocols for the analysis, operation and requirements of large-scale production

As the demand for efficient energy sources continues to grow, electrical systems are becoming more essential to meet these increased needs. Electrical generation and transmission plans must remain cost-effective, reliable, and flexible for further future expansion. As these systems are being utilized more frequently, it
becomes imperative to find ways of optimizing their overall function. Novel Advancements in Electrical Power Planning and Performance is an essential reference source that provides vital research on the specific challenges, issues, strategies, and solutions that are associated with electrical transmission and distribution systems and features emergent methods and research in the systemic and strategic planning of energy usage. Featuring research on topics such as probabilistic modeling, voltage stability, and radial distribution, this book is ideally designed for electrical engineers, practitioners, power plant managers, investors, industry professionals, researchers, academicians, and students seeking coverage on the methods and profitability of electrical expansion planning.

This book constitutes the refereed proceedings of the Third International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2012, held in Bhubaneswar, India, in December 2012. The 96 revised full papers presented were carefully reviewed and selected from 310 initial submissions. The papers cover a wide range of topics in swarm, evolutionary, memetic and other intelligent computing algorithms and their real world applications in problems selected from diverse domains of science and engineering.

This book identifies the challenges, solutions, and opportunities offered by smart energy grids (SEGs) with regard to the storage and regulation of diversified energy sources such as photovoltaic, wind, and ocean energy. It provides a detailed analysis of the stability and availability of renewable sources, and assesses relevant socioeconomic structures. The book also presents case studies to maximize readers’ understanding of energy grid management and optimization. Moreover, it offers guidelines on the design, implementation, and maintenance of the (SEG) for island countries.

The theme of ICGEA 2020 is bridging and connecting across disciplines, practices, places and understandings. The most interesting things happen at edges and boundaries, and so the aim of the conference is to demonstrate and examine different approaches in innovative green energy solutions.

Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book’s authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in
different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems. Includes significant global case studies of current and novel modeling techniques for comparison. Covers numerical simulations of hybrid systems energy modeling and applications.

This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.

Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components.
Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems

Distributed generation is desired when the individual energy requirements ranging from 25-75 kW of office buildings, restaurants, hospitals and apartments can not be met by the current electric utility grid. Microturbine generators as stand alone power generation systems have been designed to meet these requirements. For power requirements up to 50 MW, hybrid fuel cell systems offer higher efficiency and lower levels of pollutant emissions with more advanced fuel energy savings than non-hybrid systems. The objective of this project is to develop a simulation of a microturbine generator as a stand alone power generation system to validate a microturbine generator as part of a hybrid power generation system designed to produce 250 kW of usable power in MATLAB/Simulink®. The stand alone power generation system will be modeled using a 1-Dimensional approach. The hybrid power generation system is modeled as three major sub-systems; a hybrid microturbine generator, a molten carbonate fuel cell with catalytic oxidizer, and a shell-and-tube heat exchanger. The hybrid power generation system will be analyzed by two different models; a 0-Dimensional hybrid model where all the components are 0-Dimensional and a 0-Dimensional model with 1-Dimensional zooming for the hybrid microturbine generator. The analysis of the stand alone system is used for validation of the hybrid system at the operating design point of the microturbine generator. A control system was placed on the hybrid microturbine generator power generation system and an analysis was completed on the temperature response of the 0-Dimensional hybrid system as the microturbine generator power was ramped from 0-30 kW over six different time intervals. A second controller was placed on the fuel cell power generation system to further analyze the hybrid system’s controllability. The three MATLAB/Simulink® models developed provide an initial design methodology for modeling and simulation of a hybrid power generation system.

Wind Turbines addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It
provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields. It is based on the author's experience gained over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics. The second edition accounts for the emerging concerns over increasing numbers of installed wind turbines. In particular, an important new chapter has been added which deals with offshore wind utilisation. All advanced chapters have been extensively revised and in some cases considerably extended.

Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it.

Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids. Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems. Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind-photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their
application for desalination systems. With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods. Reviews the development and operation of stand-alone and hybrid wind energy systems. Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems.

Highlighting the capabilities, limitations, and benefits of wind power, Wind Turbine Technology gives you a complete introduction and overview of wind turbine technology and wind farm design and development. It identifies the critical components of a wind turbine, describes the functional capabilities of each component, and examines the latest perf.

As the fastest growing source of energy in the world, wind has a very important role to play in the global energy mix. This text covers a spectrum of leading edge topics critical to the rapidly evolving wind power industry. The reader is introduced to the fundamentals of wind energy aerodynamics; then essential structural, mechanical, and electrical subjects are discussed. The book is composed of three sections that include the Aerodynamics and Environmental Loading of Wind Turbines, Structural and Electromechanical Elements of Wind Power Conversion, and Wind Turbine Control and System Integration. In addition to the fundamental rudiments illustrated, the reader will be exposed to specialized applied and advanced topics including magnetic suspension bearing systems, structural health monitoring, and the optimized integration of wind power into micro and smart grids.

Most of the remote rural areas of Ethiopia are not yet electrified. Electrifying these remote areas by extending grid system is difficult and costly. As the current international trend in rural electrification is to utilize renewable energy resources; solar, wind, biomass, and micro hydro power systems can be seen as alternatives. Among these, wind and solar energy systems are thought to be ideal solution for rural electrification due to abundant solar radiation and significant wind distribution availability nearby the rural community in Ethiopia. This book has been written to satisfy the interest of readers on renewable energy technologies and utilization. The primary reason which motivated the author was to provide some initial information to people who are embarking on a career in the renewable energy technologies and utilization in developing countries like Ethiopia. It is this group of people that the present book is targeted at. This book is organized into six chapters. It covers basic concepts of wind and solar energy technologies, their potential resources and utilization in Ethiopia.
Besides it provide thorough discussion on design of hybrid power generation system.

This book discusses innovations in the field of hybrid energy storage systems (HESS) and covers the durability, practicality, cost-effectiveness, and utility of a HESS. It demonstrates how the coupling of two or more energy storage technologies can interact with and support renewable energy power systems. Different structures of stand-alone renewable energy power systems with hybrid energy storage systems such as passive, semi-active, and active hybrid energy storage systems are examined. A detailed review of the state-of-the-art control strategies, such as classical control strategies and intelligent control strategies for renewable energy power systems with hybrid energy storage systems are highlighted. The future trends for combination and control of the two systems are also discussed.

The PowerAfrica Conference provides a forum for research scientists, engineers, and practitioners to present and discuss latest research findings, ideas, and emerging technologies and applications in the area of power systems integrations, business models, technological advances, policies and regulatory frameworks for the African continent.

This book looks at the challenge of providing reliable and cost-effective power solutions to expanding communications networks in remote and rural areas where grid electricity is limited or not available. It examines the use of renewable energy systems to provide off-grid remote electrification from a variety of resources, including regenerative fuel cells, ultracapacitors, wind energy, and photovoltaic power systems, and proposes a powerful hybrid system that can replace the need and high operation costs of batteries and diesel powered electric generators. Analyzes types of communications stations and their rate of consumption of electrical power; Presents brief descriptions of various types of renewable energy; Investigates renewable energy systems as a source for powering communication stations.

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within
both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Electricity is a quantity, commodity that everyone want from charging a phone to running a factory the ever growing demand of electricity renewable energy resources are the most important and easy sources of energy yet non-polluting. Wind energy is the most efficient way of generating electricity. The self-excited induction generator (SEIG) is the best suited isolated generation system due to its simple and robust construction, reduced unit cost and easy maintenance. In the same way. Photo-voltaic power is also another promising energy source. Wind power and PV power are complimentary because strong winds are mostly to occur during night time and cloudy days whereas sunny days are often come with weak winds. Hence, Wind-Solar hybrid generation system can offer higher reliability to maintain continuous power output than other individual power generation system. The stand alone wind- solar hybrid generation system is valuable to use. Therefore it is important to study the performance of standalone wind-solar hybrid generation system under steady-state and dynamic condition for the optimum utilization of its meritorious features. This article is a simple and generalized fuzzy logic based intelligent controller is proposed, which is suitable and for autonomous operation of solar energy conversion or for isolated hybrid energy conversion.

Learn Azure in a Month of Lunches, Second Edition, is a tutorial on writing, deploying, and running applications in Azure. In it, you’ll work through 21 short lessons that give you real-world experience. Each lesson includes a hands-on lab so you can try out and lock in your new skills. Summary You can be incredibly productive with Azure without mastering every feature, function, and service. Learn Azure in a Month of Lunches, Second Edition gets you up and running quickly, teaching you the most important concepts and tasks in 21
practical bite-sized lessons. As you explore the examples, exercises, and labs, you'll pick up valuable skills immediately and take your first steps to Azure mastery! This fully revised new edition covers core changes to the Azure UI, new Azure features, Azure containers, and the upgraded Azure Kubernetes Service. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Microsoft Azure is vast and powerful, offering virtual servers, application templates, and prebuilt services for everything from data storage to AI. To navigate it all, you need a trustworthy guide. In this book, Microsoft engineer and Azure trainer Iain Foulds focuses on core skills for creating cloud-based applications. About the book Learn Azure in a Month of Lunches, Second Edition, is a tutorial on writing, deploying, and running applications in Azure. In it, you’ll work through 21 short lessons that give you real-world experience. Each lesson includes hands-on lab so you can try out and lock in your new skills. What's inside Understanding Azure beyond point-and-click Securing applications and data Automating your environment Azure services for machine learning, containers, and more About the reader This book is for readers who can write and deploy simple web or client/server applications. About the author Iain Foulds is an engineer and senior content developer with Microsoft. Table of Contents PART 1 - AZURE CORE SERVICES 1 Before you begin 2 Creating a virtual machine 3 Azure Web Apps 4 Introduction to Azure Storage 5 Azure Networking basics PART 2 - HIGH AVAILABILITY AND SCALE 6 Azure Resource Manager 7 High availability and redundancy 8 Load-balancing applications 9 Applications that scale 10 Global databases with Cosmos DB 11 Managing network traffic and routing 12 Monitoring and troubleshooting PART 3 - SECURE BY DEFAULT 13 Backup, recovery, and replication 14 Data encryption 15 Securing information with Azure Key Vault 16 Azure Security Center and updates PART 4 - THE COOL STUFF 17 Machine learning and artificial intelligence 18 Azure Automation 19 Azure containers 20 Azure and the Internet of Things 21 Serverless computing Hybrid-Renewable Energy Systems in Microgrids: Integration, Developments and Control presents the most up-to-date research and developments on hybrid-renewable energy systems (HRES) in a single, comprehensive resource. With an enriched collection of topics pertaining to the control and management of hybrid renewable systems, this book presents recent innovations that are molding the future of power systems and their developing infrastructure. Topics of note include distinct integration solutions and control techniques being implemented into HRES that are illustrated through the analysis of various global case studies. With a focus on devices and methods to integrate different renewables, this book provides those researching and working in renewable energy solutions and power electronics with a firm understanding of the technologies available, converter and multi-level inverter considerations, and control and operation strategies. Includes significant case studies of control techniques.
and integration solutions which provide a deeper level of understanding and knowledge. Combines existing research into a single informative resource on microgrids with HRES integration and control. Includes architectural considerations and various control strategies for the operation of hybrid systems.

This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.

Hybrid energy systems integrate multiple sources of power generation, storage, and transport mechanisms and can facilitate increased usage of cleaner, renewable, and more efficient energy sources. Hybrid Power: Generation, Storage, and Grids discusses hybrid energy systems from fundamentals through applications and discusses generation, storage, and grids. Highlights fundamentals and applications of hybrid energy storage. Discusses use in hybrid and electric vehicles and home energy needs. Discusses issues related to hybrid renewable energy systems connected to the utility grid. Describes the usefulness of hybrid microgrids and various forms of off-grid energy such as mini-grids, nanogrids, and stand-alone systems. Covers the use of hybrid renewable energy systems for rural electrification around the world. Discusses various forms and applications of hybrid energy systems, hybrid energy storage, hybrid microgrids, and hybrid off-grid energy systems. Details simulation and optimization of hybrid renewable energy systems. This book is aimed at advanced students and researchers in academia, government, and industry, seeking a comprehensive overview of the basics, technologies, and applications of hybrid energy systems.

This book is intended for academics and engineers who are working in universities, research institutes, utility and industry sectors wishing to enhance their idea and get new information about the energy efficiency developments in smart grid. The readers will gain special experience with deep information and new idea about the energy efficiency topics. This book includes lots of problems and solutions that can easily be understood and integrated into larger projects and researches. The book enables some studies about monitoring, management and measures related to smart grid components. Energy Efficiency Improvements in smart grid components and new intelligent Control strategies for Distributed energy resources, boosting PV systems, electrical vehicles, etc. It included optimization concepts for power system, promoting value propositions; protection in power system, etc. The book also has some recent developments in solar cell technologies, LEDs and non thermal plasma technology. As I enjoyed preparing this book I am sure that it will be very valuable for large sector of readers.

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy.
control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems, helping researchers solve many nonlinear problems

Hybrid Energy Systems: Strategy for Industrial Decarbonization demonstrates how hybrid energy and processes can decarbonize energy industry needs for power and heating and cooling. It describes the role of hybrid energy and processes in nine major industry sectors and discusses how hybrid energy can offer sustainable solutions in each. Introduces the basics and examples of hybrid energy systems Examines hybrid energy and processes in coal, oil and gas, nuclear, building, vehicle, manufacturing and industrial processes, computing and portable electronic, district heating and cooling, and water sectors Shows that hybrid processes can improve efficiency and that hybrid energy can effectively insert renewable fuels in the energy industry Serves as a companion text to the author’s book Hybrid Power: Generation, Storage, and Grids Written for advanced students, researchers, and industry professionals involved in energy-related processes and plants, this book offers latest research and practical strategies for application of the innovative field of hybrid energy.

The global warming phenomenon as a significant sustainability issue is gaining worldwide support for development of renewable energy technologies. The term “polygeneration” is referred to as “an energy supply system, which delivers more than one form of energy to the final user.” For example, electricity, cooling and desalination can be delivered from a polygeneration process. The polygeneration process in a hybrid solar thermal power plant can deliver electricity with less impact on the environment compared to a conventional fossil fuel-based power generating system. It is also THE next generation energy production technique with the potential to overcome the undesirable intermittence of renewable energy systems. In this study, the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from
different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiencies (energy and exergy), primary energy savings (PES) and payback period are investigated, focusing on several aspects associated with hybrid solar-biomass power generation installations, such as wide availability of biomass resources and solar direct normal irradiance (DNI), and other technologies. Thermodynamic evaluation (energy and exergy) of HSB power has also been investigated, along with the VAR cooling system, the modelling, simulation, optimization and cost analysis of the polygeneration hybrid solar-biomass system, all accompanied by multiple case studies and examples for practical applications. This volume provides the researcher, student and engineer with the intellectual tool needed for understanding new ideas in this rapidly emerging field. The book is also intended to serve as a general source and reference book for the professional (consultant, designer, contractor etc.) who is working in the field of solar thermal, biomass, power plant, polygeneration, cooling and process heat. It is a must-have for anyone working in this field.

This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on “Computational Intelligence in Data Mining” (ICCIDM), and offer a “sneak preview” of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields.

This open access book presents papers displayed in the 2nd International Conference on Energy and Sustainable Futures (ICESF 2020), co-organised by the University of Hertfordshire and the University Alliance DTA for Energy. The research included in this book covers a wide range of topics in the areas of energy and sustainability including: • ICT and control of energy; • conventional energy sources; • energy governance; • materials in energy research; • renewable energy; and • energy storage. The book offers a holistic view of topics related to energy and sustainability, making it of interest to experts in the field, from industry and academia.

This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also
included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems.

The book’s text focuses on explaining and analyzing the dynamic performance of linear and nonlinear systems, in particular for Power Systems (PS) including Hybrid Power Sources (HPS). The system stability is important for both PS operation and planning. Placing emphasis on understanding the underlying stability principles, the book opens with an exploration of basic concepts using mathematical models and case studies from linear and nonlinear system, and continues with complex models and algorithms from field of PS. The book’s features include: (1) progressive approach from simplicity to complexity, (2) deeper look into advanced aspects of stability theory, (3) detailed description of system stability using state space energy conservation principle, (4) review of some research in the field of PS stability analysis, (5) advanced models and algorithms for Transmission Network Expansion Planning (TNEP), (6) Stability enhancement including the use of Power System Stabilizer (PSS) and Flexible Alternative Current Transmission Systems (FACTS), and (7) examination of the influence of nonlinear control on fuel cell HPS dynamics. The book will be easy to read and understand and will be an essential resource for both undergraduate and graduate students in electrical engineering as well as to the PhDs and engineers from this field. It is also a clear and comprehensive reference text for undergraduate students, postgraduate and research students studying power systems, and also for practicing engineers and researchers who are working in electricity companies or in the development of power system technologies. All will appreciate the authors' accessible approach in introduction the power system dynamics and stability from both a mathematical and engineering viewpoint.

The main aim of this study is to present power plants for all fields of industry. The chapters collected in the book are contributions by invited researchers with long-standing experience in different research areas. I hope that the material presented here is understandable to a wide audience, not only energy and mechanical engineering specialists but also scientists from various disciplines.
The book contains seven chapters in two sections: (1) "Power Plants

Hybrid Systems and Multi-energy Networks for the Future Energy
Internet provides the general concepts of hybrid systems and multi-
energy networks, focusing on the integration of energy systems and
the application of information technology for energy internet. The
book gives a comprehensive presentation on the optimization of hybrid
multi-energy systems, integrating renewable energy and fossil fuels.
It presents case studies to support theoretical background, giving
interdisciplinary prospects for the energy internet concept in power
and energy. Covered topics make this book relevant to researchers and
engineers in the energy field, engineers and researchers of renewable
hybrid energy solutions, and upper level students. Focuses on the
emerging technologies and current challenges of integrating multiple
technologies for distributed energy internet Addresses current
challenges of multi-energy networks and case studies supporting
theoretical background Includes a transformative understanding of
future concepts and R&D directions on the concept of the energy
internet

Copyright code : 49ddab8a97797ae2e78db69d77095dcd